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Abstract

Thermocouples are a practical and potentially accurate means for determining surface temperatures in many ap-
plications. Yet, significant errors can often arise during the usage of beaded thermocouples because of the effects of
junction displacement, contact resistance, and stray heat transfer to the surrounding environment. To help offset these
potentially significant sources of errors, Duhamel’s integral in Laplace form was first used to relate the response of a
surface thermocouple to the true substrate temperature. Once formulated, both exact and approximate Laplace in-
version methods were used to derive closed-form corrective solutions. The resulting thermocouple correction curves
show good agreement between themselves and existing analytical expressions and indicate the potentially deleterious
effects of junction displacement, contact resistance, and the stray heat transfer to the surrounding environ-

ment. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

While many temperature measurement techniques
have been developed and used over the years, surface
mounted thermocouples still represent one of the most
practical means of monitoring a wide range of tem-
peratures. Unfortunately, the use of thermocouples is
not without difficulties because of the deleterious influ-
ences of the mass of the thermocouple, the displacement
of the junction (point of measure) from the substrate
surface, contact resistance between the thermocouple
and surface, as well as any stray heat transfer to the
surrounding environment that can occur during a vari-
ety of industrial practices. To help offset the potentially
significant errors that may result from any combination
of these effects, a number of useful, albeit empirically
based thermocouple corrective models and error mini-
mizing steps have also been developed over the years
[1-4]. While all of these methods are useful in alleviating
and/or quantifying the sources of errors, they are not
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always practical and/or often require additional ther-
mocouple calibration tests.

In a significant step towards determining the under-
lying temperature or forcing function, recent studies [5]
were able to derive unit response functions (kernels) for
a wide range of conditions that include the displacement
of the junction from the surface, contact resistance be-
tween the thermocouple and substrate surface, as well as
any stray heat transfer to the surrounding environment.
This comprehensive study was also able to derive a
limited number of solutions for the substrate forcing
functions under step and linear temperature changes by
using Duhamel’s integral. While these solutions offered
significant improvements to the resolution of errors
without empirical constants, their utility is still limited to
step and linear substrate temperature histories by the
mathematics of inversion. As a remedy to these short-
comings, correction functions based on more versatile
polynomials in time have been recently developed [6,7]
for intrinsic thermocouples. The next important step is
for the determination of practical corrective functions
for the more commonly used beaded thermocouple.

The purpose of this paper is therefore, to expand the
available set of correction functions to include beaded
thermocouples complete with any combination of junc-
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Nomenclature

A thermal diffusivity ratio, Dt./Dsp

B contact resistance coefficient

Bi Biot number, hr/k

D thermal diffusivity

K thermal conductivity ratio, kr./ksp
R(t) thermocouple response

X non-dimension junction displacement, X /r
¢ inversion constant (¢ = 2)

h. contact resistance coefficient

heo environmental convective coefficient
k thermal conductivity

r thermocouple wire radius

s Laplace variable

s Gaver—Stehfest variable

t non-dimension time, Dg,7/7?

X junction displacement

a, —az integral-order polynomial coefficients
by — b3 half-order polynomial coefficients

1) non-dimension constant, f/(8/n% + B)

G non-dimension constant, 4/(8/n + fin)
C; non-dimension constant, C, — 1

AT(2) substrate temperature forcing function
10 thermocouple unit response

o(r) recurring function defined by Eq. (28)
Q(1) recurring function defined by Eq. (19)
B non-dimension constant, k/v/4

dq1 — 0,3 integral-order correction functions
Op1 — 0p3  half-order correction functions

¢ recurring function defined by Eq. (21)
T time

Subscripts

I intrinsic

B includes contact resistance

Bi includes stray heat transfer

Sb substrate

Tc thermocouple

X includes junction displacement

tion displacement, contact resistance, and stray heat
transfer to the surrounding environment. To accomplish
this and allow the accurate determination of surface
temperatures, solutions for substrate forcing functions
are derived by using direct Laplace inversion of a solu-
tion based on Duhamel’s integral and a polynomial
approximating the measured response. In addition, two
approximate inversion techniques are used to derive
closed-form solutions capable of modeling the response
of a wide range of thermocouple types using measured
temperature data.

2. Analytical considerations

The analysis begins with an idealization of a beaded
thermocouple complete with the potential for junction
displacement, contact resistance, and stray heat trans-
fer as shown in Fig. 1. For this idealized thermocouple,
a measurable response R(f) will ensue after the sub-
strate has undergone a time-dependent temperature
change as dictated by an arbitrary forcing function
AT(¢). Duhamel’s convolution integral [8] can then be
used to relate the measured response, R(¢) and the unit
response or kernel, ®(¢) to the unknown substrate
forcing function:

Ry =3 [ AT 0l - 9 a m

provided the thermophysical properties are assumed to
be independent of temperature. The significance of

Eq. (1) arises from the fact that the only system in-
formation required to describe the response of the
thermocouple to any forcing function is the unit re-
sponse. However, this requires that a unit response
containing all relevant terms for junction displace-
ment, contact resistance, and stray heat transfer be
fully defined.

Fortunately, a comprehensive, late time (¢ > 0.1)
solution for the unit response has been derived [5] in the
Laplace domain as

R(t):blt; +-,t+h,z§ 18,8+

AT(t)

Substrate

Fig. 1. Idealized thermocouple on a thermally thick substrate
showing junction displacement x, contact resistance 4., and
stray heat transfer to the surrounding environment #..
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D, p5i(s)
Pi(s)
s[Wi(s) + (KWa(s)/sv/4) + (K¥i(s)

¥, (s)/BVA)]

(2)
where the recurring terms ¥ (s) and ¥,(s) are:
8§ 4
Yi(s) =—=—=+—, Wils) =Vs+44Bi
() =t als) = Vit 4B ()

where A is the non-dimensional diffusivity ratio, Bi the
Biot modulus for heat transfer between the thermocouple
and the external environment (with convective coefficient
h), and x is the non-dimensional junction displacement
of the thermocouple relative to the substrate surface.
These and a few additional non-dimensional relation-
ships including the time variable, ¢ are defined as follows:

D
A="20 K:L{Sb, B:L’“r7 Bi:h“r,
DTc k’[c ka ch
K Dyt X
E— = = . 4

In Egs. (4), D is the thermal diffusivity (subscripts Sb and
Tc are for the substrate and thermocouple, respectively),
k the thermal conductivity, r the radius of the thermo-
couple wire, 7 is dimensional time, and B is the contact
Biot modulus (with contact coefficient 4.). All of the di-
mensional quantities and thermophysical properties can
be measured directly. On the other hand, the terms de-
scribing the contact resistance can be estimated by using
a variety of available methods [9-13]. Unfortunately,
only certain limiting cases of the unit response defined by
Eq. (2) may be obtained through direct inversion.

Once such case involved an intrinsic thermocouple
where the junction is at the surface and there is no sig-
nificant contact resistance or stray heat transfer
(x =0,B = 0o, and Bi = 0). The late time (¢ > 0.1) unit
response, ®(¢) is defined as [5,14]:

®(r) = 1 — Crexp(C31)[1 — erf(C2 V1) ], (5)
where
= B/(8/7° + p), =4/(8/m+ pm). (6)

For an ideal beaded thermocouple without contact re-
sistance or heat transfer to the environment
(x > 0,B = 00, and Bi = 0), the late time unit response
@, (1), is also given as [5]:

D, (t,x) = erfc( — Crexp (Czi + C%t)

/) 7
x erfc(ﬁA_t + cz\/i), ()

where erfc(d) represents the complimentary error func-
tion and all other variables are as previously defined.

Finally, for relatively large values of non-dimensional
time (¢ > 1), the unit response for a beaded thermo-
couple where junction displacement, contact resistance,
and stray heat transfer to the surrounding environment
are considered (x > 0,B # oo, and Bi > 0), can be ap-
proximated [5]:

exp (—2xV/Bi)
1+2K\/Bi(1/B+1/4)
1+K\/§i X ! .
m2y/nt 14+2K+/Bi(1/B+n/4)

D, pi(t,x) =

(®)

As would be expected, this relationship indicates that a
residual steady-state error will always permeate the
measured data because of the combined influence of the
junction height and stray heat transfer to the sur-
rounding environment.

3. Direct inversion

For the correction of temperature data measured
using thermocouples, the utility of Eq. (2) is ultimately
limited by its ability to be inverted and evaluated in the
convolution integral in Eq. (1). However, an alternate
approach that solves for the forcing temperature func-
tion AT(¢), actually proves to be somewhat more tract-
able, even though direct inversion of a seemingly more
complicated expression is required. Using Eq. (1), a
generalized solution for the unknown temperature
forcing function AT(¢), may be realized by taking the
Laplace transform of Eq. (1) and rearranging terms such
that

R(s)

AT() = g o)

©)
where R(s) is an arbitrary expression representing the
Laplace transform of the measured response of the
thermocouple R(¢). For practical reasons, a response
composed of integral- and half-order polynomials in
time is suggested

3
=" laf + b 7], (10)
=
such that the following Laplace form results:

3 .
=2 [o e T

where I' represents the Gamma function and the coef-
ficients a; and b, are for the integral- and half-order
polynomial terms, respectively. It is important to note
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that the restriction of the series to six terms of integral-
and half-order powers of time is arbitrary and does not
represent a limitation of the method. However, the #
polynomial term must be avoided if the current form of
Eq. (1) is to be used.

As shown in the generalized derivations, polynomials
can be used to approximate the measured response of a
thermocouple. The use of polynomials offers a number
of advantages and potential drawbacks for the current
analysis. In terms of advantages, the use of a versatile
polynomial allows the approximation of a wide range of
measured data. Moreover, properly used polynomials
can help smooth out the errors that are inherent to any
measurement process. As shown in Fig. 2, a relatively
simple third-order polynomial can be used to smooth the
measured temperature data. However, care must always
be exercised with polynomials (or any approximating
function) to ensure a reasonable fit to the data; lower
order polynomials may not adequately fit or describe the
data and transient trends while the addition of higher
order terms may result in curve instability or “wiggle”.
Both types of curve inadequacies can introduce signifi-
cant errors into the analysis that will be machine and
algorithm dependent. Furthermore and irrespective of
the type and order used, the approximate curve should
never be used beyond the data interval used to define it.
Finally, the measured data and what appear to be ran-
dom errors may actually be changes in the surface
temperature that reflect sudden variations of the un-
derlying excitation. Unfortunately, this is a problem
inherent to any inverse analysis and cannot be easily
rectified without using an adaptive procedure that goes

1.0
3 ) L
R(t)=>|a +bt’ 7 v
0.8 =
0.6
R(t)
R..
0.4 -
¥ Measured Data
0.2 H — Cubic Polynomial
0.0 T T T T T IJ

0 5000 10000 15000 20000 25000 30000

t

Fig. 2. Time-dependent response of 0.Imm diameter type-k
beaded thermocouple showing the smoothed approximation
from a third-order polynomial (ay =2.32E -2,
a, = —3.08E — 7, as = —3.09E — 14, and bl = bz = b3 = 0)

beyond the intent of this paper to present straightfor-
ward analytical tools. Hence, engineering judgement
should always be used to ensure that the polynomial
adequately describes the data and does not ignore or
exaggerate actual trends.

Using this general representation of R(s) for the
measured response, direct inversion of Eq. (9) yields the
following expression for a substrate surface temperature
or forcing function as defined by the polynomial coef-
ficients:

3
Z a;04;(x, Bi, B, t) + b;0,(x, Bi, B, )],
Jj=1

t>1, (12)

where J,; and J,; represent the corrective functions. For
beaded thermocouples with junction displacement x,
contact resistance B, and stray heat transfer to the sur-
rounding environment Bi, an approximate solution for
the correction functions has been obtained using Eq. (8)
for the unit response:

0* 2yt
. .7 1
a1 (x, Bi, B, t) t+¢{ o \/_-i-\/_ ()}7 (13)
Sa2(x, Bi, B z):z2+2 {n 04(1 —i) + 0 (t — 20V/1)
a. 7 7 ) d) \/—
- goﬂ/z + n3/2049(t)} , (14)
. 3 6 396 0 204
ds3(x,Bi,B.1) =1t 5| 0 1—\7 + 70" (1= 20V1)
2 2 5/2
—ﬂn()}tm+ne—[—%+n5/2069(t)]7
2 15
(15)
1 [ n6? Q1)
_ 412 [ I R S
5b1(x Bi, B, l) t + l:z\/_ o 0 :l, (16)

5[,2()5 Bl B l) _tz/2+43¢|: 293<§— 1)

+m0(20vt —t) — n3/2939(t)} ) (17)

Spy(x, Bi,B,1) = /> + 8¢{305(\/ 1)

STEO 8t5/2
20°(20v/1 — ¢
+ 70’ 20Vt —t) + 6\/

TES/ZBS.Q(I‘):|, (18)

with the recurring term Q(¢) containing the exponen-
tially scaled, complimentary error function
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o= Al o)} o

a steady-state error term

kBi 1
0:<W>1+2K\/—(1/8 (n/4))’ 2
and

B exp ( — 2xV/Bi)
=17 2K\/Bi((1/B) + (r/4)) .

It is important to note that these equations are ap-
proximate and restricted to relatively large values of
non-dimensional times. As shown by the plot in Fig. 3
based on the measured data shown in Fig. 2, the ap-
plicability of Egs. (13)—(21) is limited to the late-time
asymptotic portion of the response curve and does not
cover the more crucial early times where the response lag
is the greatest. The predicted response curves do how-
ever, indicate residual errors caused by the contact re-
sistance and stray heat transfer terms (B and Bi) that will
not abate as steady-state conditions are reached. One
obvious shortcoming of the late-time approximation
given by Eq. (8) is that the influence of the junction
displacement disappears if Bi = 0.

This is in contrast to the expressions for intrinsic
thermocouples and the same measured response (Fig. 2)
where all errors vanish at steady state because of the
absence of any stray heat transfer as shown in Fig. 4.
For the intrinsic thermocouple, the late time (¢ > 0.1)
corrective coeflicients are listed below:

C? ZCQ\/— c3
Cov/nt VT C»

@(t) )
(22)

C
0a1(t) = +C2 {Cz +

09—
x=0.5, Bi=0.01, B=co
0.8 3, ful P A G
R(1)= apt’ +bit ?
0] Z{ 1 +b, ] s
07 4 / _
2,=232E-2 a,=-3.08E-7 2,=-3.09E-14 / ST
06 bi=0 b,=0 b5=0 / /" x=1.5,Bi=0.01, B=eo
/ /
R(t) 0.5 - Exact Inversion (Eq. 12) / //
/
AT(t) 0.4 v Unit Response Approximation / /
/ A=0.4817
0.3 — — Gaver-Stehfest / / $=0.9502
/ /
02+ / / K=0.6594
/ / _
01 4 Y / D,,/r’=768
/ /
0.0 T T T T T T T
104 102 102 107 100 10! 102 10° 104
t

Fig. 3. Time-dependent response of a beaded thermocouple
showing the effects of the junction displacement, stray heat
transfer to the surrounding environment, and the resulting
steady-state error.

109 —= - —y—
3 ok
R(t)=Y|ap +br ?
0.9 - © Z Y 7
4=2.32E-2 2,=-3.08E-7 a;=-3.09E-14
b;=0 by=0 by=0
084 i : p=0.9502
K=0.6594
R(t) -
0.7 D,/r'=768
AT(1) ’
0.6 —— Exact Inversion (Eq. 12)
v Unit Response Approximation
0.5 1
Y — — Gaver-Stehfest
0.4 T T T T T T —
104 109 102 107 100 10! 102 108 104

Fig. 4. Time-dependent response of an intrinsic thermocouple
showing the absence of error once a steady-state condition has
occurred.

oot =2+ 25 [y G207
“ ala T oV T Gur
4C,P?  C3
- <r>} )
P} ()*z3+@[§+c—gt C‘t2+ | +2C4\f
“ clata Cym  Cyn
s G LS AN (1) (24)
3GVR T 30yE G
. Ciyn 2
S (t) = C — o 25
() = Vit G |G - ctou)| (23)
20 /a [ C2 G Gy
Om(t) =7 + {—3+Ct+ i+
(1) act |G T eym ' R
C4
-Go0)| (26)
1sCVa[ct G £
() =PV 3y 2y 3
s == |Gt e Y T aym
ACVE SC0E_Cop @)
Gvr 3/mn G

and the recurring term O (¢) can be simplified to contain
the exponentially scaled, complimentary error function

Czt G/t 1
O(t) = £ -
(1) = exp ( & ) {erc( |C5] )} +C3\/TU
provided C; = C; — 1. (28)

4. Unit response approximation

As shown by the relationships in Egs. (9)-(28), the
correction of the various errors associated with the use
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of thermocouples collapses to the ability to describe the
measured response with a function and invert the re-
sulting expression. This is not a trivial problem as the
required inversions of Eq. (2) or any expressions con-
taining it, may not exist in closed-form [15]. Although
numerical methods are always an option, they do little
to help gain insight into the underlying physics. More-
over, the complicated nature of the expressions may
cause convergence problems over a wide range of time,
even if the most robust numerical routines are used.
As a remedy to the inversion problems just discussed,
Direct and Indirect Laplace rules [16,17] can be used to
derive an approximate solution for the corrected re-
sponse of a beaded thermocouple. For this approximate
approach that is limited to relatively monotonic func-
tions of time, a Direct rule is first applied to determine
the Laplace transform of an arbitrary monotonic func-

tion y(¢) — Y (s)
ORI 29)
t=(cs)”

where the constant ¢ = 2. The inverse of the arbitrary
function Y (s) — ¥(¢) may then be obtained by using a
similar Inverse rule such that

Y1) = s ()] —enr- (30)

Although neither of these relationships are exact from a
mathematical standpoint, they are consistent with each
other and are capable of producing reasonable results in
certain instances. When the two rules are applied to an
expression in the form of Eq. (9)

AT(s) = —R©)

B s (px‘B‘Bi(S) ' (9)

a very interesting and useful result occurs in that the
constant disappears and the expression simplifies to the
original ratio of the measured response and unit re-
sponse [18]

R(1)
Dyppilt)

Hence, the unit response is the only system information
required for the correction of temperature data and the
estimation of the substrate forcing function. However,
the measured response, R(¢) and underlying excitation
AT (¢) must be relatively monotonic for the approxima-
tion to be valid. Furthermore, the underlying excitation
can be determined without any consideration of the
accuracy of the function used to approximate R(¢). Ac-
cordingly, care must be exercised because the reason-
ableness of the approximation and smoothing of R()
will have a direct bearing on the accuracy of the pre-
diction of AT(¢).

As shown by the resulting curves in Fig. 3, excellent
agreement was observed between the unit response ap-

AT(f) ~ (31)

1.0

v ) ——
e
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t

Fig. 5. Time-dependent response of an ideal beaded thermo-
couple showing the influence of junction displacement.

proximation (URA) and the direct inversion given by
Eq. (12). Although not verified analytically beyond the
limited range, the correction curves predicted by the
URA show the expected “quickening” of the thermo-
couple response as the junction height is decreased. In
addition, the predicted response curves show the as-
ymptotic approach towards the residual error caused by
the combination of junction displacement and stray heat
transfer to the environment. Fig. 4 shows a comparison
of the URA to the exact solution for an intrinsic ther-
mocouple. In this case, reasonable agreement is seen
between the exact and approximate solutions over a
wide range of non-dimensional time. Fig. 5 shows the
URA response predictions for an ideal beaded thermo-
couple without contact resistance or stray heat transfer.
As expected, without contact resistance and stray heat
transfer to the surrounding environment, the errors will
continuously diminish over time because the junction
will eventually reach (and measure) the substrate tem-
perature.

5. Gaver—Stehfest inversion

The URA appears to provide a reasonable estimation
of the measurement errors associated with the use of
intrinsic and beaded thermocouples. However, direct
inversion of Eq. (2) in Laplace form and the resulting
analytical solutions for the unit response may not always
be possible. In these situations, an alternate inversion
method [19-21] can be used

ln 2 m
v ~ "2 S vy, (32)
=1
where the Laplace variable s, is modified

. In(2).
S; —Tl (33)
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Table 1
First ten terms of the GS inverse approximation series

i Vi

0.0833333333
—-32.083333
1270.00076
—15,623.66689
84,244.16946
-236,957.5129
375,911.6923
—340,071.6923
164,062.5128
—-32,812.50256

O O 0 INWNRA W~

—_

and the series coefficients V; are defined through the
following relationship:

min(i,m/2)

V; _ (_1)i+m/2 Z

J

" J"?(20)! (34)

((m/2) = PG = DG = HUZj =)

For the correct calculation of the coefficients, j must be
restricted to the integer values of (i + 1)/2 while m is the
number of terms in the approximate inversion series that
must always be kept even. For most functions, a 10-term
expansion is usually sufficient; the coefficients, ¥}, for the
10-term expansion used in this analysis are listed in
Table 1. Otherwise, a 22-term expansion appears to be
the upper limit when the functions are not monotonic.
Increasing the number of terms in the series will not
necessarily improve the accuracy or range of the meth-
od.

Using the resulting method denoted herein as GS (for
the originators Gaver and Stehfest), the substrate forc-
ing function can be readily expressed as the following
multi-term series

When the GS method was applied to the discussed
thermocouple configurations with a response modeled
by the cubic polynomial shown in Fig. 2, reasonable
agreement was again observed. As shown by the
superimposed curves in Figs. 3-5, the GS method pro-
vided a reasonable approximation to both the exact and
URA solutions for the beaded and intrinsic thermo-
couples. Again, the correction curves show the expected
quickening of the thermocouple response as the junction
height is decreased, as well as the asymptotic approach
towards the residual error caused by contact resistance
and stray heat transfer to the environment. For the in-
trinsic thermocouple, as well as the ideal beaded ther-

mocouple with junction displacement only, the errors
continuously diminish over time as the junction
eventually reaches the substrate temperature.

6. Conclusions

Both direct and approximate Laplace transform in-
version methods were used to derive corrective solutions
for intrinsic and beaded thermocouples that can be used
to help correct measured temperature data. The use of
direct inversion resulted in a late-time solution that
reasonably predicts near steady-state behavior. An
alternate, inverse Laplace transform method using ap-
proximate Direct and Inverse rules resulted in relatively
simple corrective solutions based solely on the unit re-
sponse. The resulting URA was shown to be capable of
estimating thermocouple behavior over a wide range of
time. However, the URA is limited by the availability
and accuracy of unit response solutions and the mo-
notonicity of the substrate temperature. To compensate
for this limitation, a series approximation was also em-
ployed to generate corrective solutions for a wider
variety of thermocouple types and loading conditions.
For all of the explored thermocouple cases that in-
clude combinations of junction displacement, contact
resistance between the bead and surface, and stray heat
transfer to the surrounding environment, the resulting
corrective expressions show reasonable agreement be-
tween themselves and exact expressions when available.
In addition, the solutions highlight the potential signif-
icance of these errors, especially when stray heat transfer
conditions are present.
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